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AFIT/GE/EN G/90D-63

A bstact

This thesis, considers the design of a lijiear quadratic Gaussian (LQG) contruler

for a ground-based adaptive-optics telescope. The incoming aberrated image is reflected

from a 97-actuator (eforInable piezoelectric mirror, then measured with a llartmann-

type wavefront sensor. A Nalman filter proces.ses the outputs of the \%avefront sensor and

obtains estimates of system states. A linear-quadratic (I,Q) regulator processes these state

estimates and deteriniiies aa appropriate set of commands for the defor.-:,able mirror.

Atmospheric distortion is modeled as a set of fourteen Zernike coC Yicients whose dy-

namic behavior is produced by excitation of a set of shaping filters by zero-mean Gaussian

white noise. The response of the mirror to control voltages is modeled as a set of Zernike

coefficients whose dynamics are modeled as deterministic first-order systems. The entire

control system is simulated using the Multimode Simulation for optimal Filter Evaluation

(MSOFE) software.
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DESIGN OF A LINEAR QUAL)RATIC GAUSSIAN CONTROL LAW FOR AN

ADAPTIVE't ICS SYSTPTIM

1. Introduction

1.1 Motivation

Certain aspects of the Air Force mission require high-resolution imaging of distant

objects. The resolution attainable is theoretic:Ily diffraction limited by the receiving aper-

ture. From physics, this diffraction limited resolution is a function of both the diameter

of the aperture and the wavelength of light. The larger th. ratio of aperture diameter to

wavelength, the better the resolution. When some or all of the space between the object

and aperture contains turbulent atmosphere, as with ground-based imaging of celestial-

bodies, the resolution is degraded considerably-the image wanders, becomes fuzzy and

distorted, and undergoes intensity fluctuations [2]. It has been reported [13:360] that, on

the average, these effects may degrade resolution of larger telescopes to two arc seconds

or more, corresponding to diffraction-limited viewing through only a 6-cm aperture. One

obvious approach to overcoming atmospheric distortion is to place the telescope above the

atmosphere. An example of this approach is the Hlubble space telescope.

The Air Force Weapons Laboratory (AFWL) at Kirtland AFB, NM, the Rome Air

Development Center (RADC) at Griffis AFB, NY, and a number of other Government

and private institutions are interested in compensating for these deleterious effects by

using adaptive optics in the receiving optical system. Adaptive optics is the use of active

optical components for compensation of unwanted time-varying optical characteristics.

For example, an automatic focus mechanism in a 35-mam camera is an adaptive optics

system. In particular, the AFWIL is actively pursuing the use of adaptive optics using

deformable mirrors for ground-based observation of orbiting satellites, and is the sponsor

of this research.
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1.2 Jkescarch Objcctivf

The overall objective of this research is to develop a Linear Quadratic Gaussian

(LQG) control law for an adaptive optics syjteni. Such a control law provides optimal

control in the sense of minimizing a defined cost function associated with deviation from

desired behavior. LQG also accounts for uncertainty in measurements and the stochastic

nature of the state dynamics. A detailed discussion of LQG control is available in the

literature [25]. To achieve the LQG design, several tasks are required:

1. Define a state space OIL which to base design and analysis.

2. Develop the stochastic equations which model the open-loop system.

3. Develop the LQG control law.

4. Simulate and evaluate the controlled, closed-loop system.

The first task involves determining a method of quantifying distortion of a time-varying im-

age. The method should account for most of the distortion using as few states as possible.

The states should also be conducive to measurement. Once the states are identified, the

second task is to represent the stochastic nature of their dynamics and measurements in a

set of equations (models) which describe the random nature of the processes. Key compo

nents of such a model are atmospheric distortion, mirror response, and wavefront sensing.

Wherever practical, the research uses actual data from the deformable mirror apparatus

currently in the optics development laboratory at the AFWL. Once these open-loop "truth"

models are developed, the actual controller can be designed. This task includes definition

of an appropriate cost function, design of a Kalman filter-possibly of reduced order-to

estimate system states and covariances, and design of a linear-quadratic (LQ) regulator.

The final task includes simulation of the -:omplete system. This will involve implementing

the truth models, IKalman filter, and controller in sofware capable of simulating random_

processes. Iiuhltimode Simulation for Optimal Filter Evaluation (MSOFE) [2S1 is such a

package.
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1.3 A .';,Ssttnt H ionsi

This research is a proof-of-concept. Several assumptionis are necessary' in order to

carry it out in the alotted time. Soi," of the assumptions are made ba (i' on literature

precedent. Many of the assumptions are made to account for lack of data. Other assump-

tions are engineering judgement.

The first assumption is that the telescope is ground base(l, and that the application

is satellite-viewing. A second assumption is that a separate control system is responsible

for keeping the telescopj pointed at the satelliti. It is assumed the telescope is using a

visible point source of light at or near the satellite as a reference, and that anisoplanatisin

is negligible, i.e., the light from the reference traverses the same atmosplhcre as the light

from the satellite. This implies that deformiing thim mirror to improve the reference image

will also sharpen the satellite image. The wavelength A of the refeience image light is

assumed to be 514 nanometers (nm), the value used during laboratory evaluation of tle

hardware [22].

The deformable mirror is a 97-element piezoelectric mirror whose actuators are ar-

ranged in evenly-spaced rows and columns. Furthermore, based on limited data, it is

assumed the actuators are linear, and that all actuator influence functions are identical

and symmetric. The effects of additional factors (lenses, vibrations, etc.) are not modeled.

In an actual telescope, separate active tilt mirrors may precede the deformable mirror.

These non-deformable tilt mirrors remove the gross tilts of the overall image. Phis re-

search does not explicitly model these mirrors, but assumes they remove 95 % of the gross

tilts.

Although the statistics of atmospheric distortion of images are time varying-for

example, there is generally less distortion at night than day-the stochastic model for the

atmosphere is assumed time-invariant. This assumption is valid if the duration of the

observation is short relative to the time-varying nature of the atmospheric statistics.

Finally, the very nonrestrictive assumption is made that the time delay due to light

propagation through the optical components is negligible. The time delay due to finite
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sampling time, however, is not negligible. The effect of time delay in the sampling process

will not bc specifically modeled, but will be used as ani upiper limit on the sampiing rate.

1.4 trcatini -tn

This thesis presents material in a topical fashion. First, Chapter 2 begins by laying

the groundwork fundamental to the understanding of atmospheric turbulence and its effect

on optical viewing. A qualitative discussion of an adaptive optics system is presented. The

remaining portion of Chapter 2 defines the state space used for design and analysis of

the control system. Chapter 3 develops stochastic models of the atmospheric distortion,

deforrnable mirroi, and wavefront sensor. Chapter 4 presents the design of the LQG control

law, anid Chapter 5 discusses the closed-loop simulation and evaluation thereof. Chapter

6 presents conclusions of this research and recommendations for futurc efforts.
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II. JBckqrouild

.1.1 )7tTYWolirlf(,it The atmiosphiere cali have several effect-. oit light traversing it.

(Cerl;i'i chernical ( onstil aents of the atlmosphere may selectively absorb1 certain frequencies

of I hgIait a.' retransmit t Ie (I ier~g at differerj frequencies. If tite I igk is a h ighi-energy beanm

.;it( , as a I igfi-energy Ia w ?Y, it is possible for te l cIight energy absorbLed by tht ý.tnxosp I ere

to :Ifkect the index Of rCfraCtiomi ill thle immediate vichinity oi the beam, N%-j.ich in turn

affects the( shape of the, beari profile. This phienomenon is known as blooming 14 1:2231.

in the Ipreseince of aerosoýs, light may experience spatial disconti nui ties ii, the direction

of propagation, a phellnomenon kinownl asý scattering. iFinally, in imaging applications, the

turbulenc~e of the atrnoqpll.'r( cani c-iuý,e continuous spatial and temporal variations in tile

index of refr~.ction along the raY path, resulting- in temporal and spatial mnodulation of

the received intensity and phase. Thec modulation of intensity is known as scintillation

[5:37], tin example of which is thle twinlkling Of Stars [37:224] [36:31. As a rule of thumb.

sc~ntillation effects can be considered insignificant whewn the wavelength A, propagation

distance through turbulence L, and telescope- entranc, aperture diameter -0. are related

by [4-1:2,580] [45:819]

A~L <- D (2.1)

Fom example, for an atmospheric propagation distance of 20.500 meters [3S:A41. wavelength

of 514 nanometers and a telescope diamcecr of 1 mveter, the result is a less Severe inequality

0.102 < 1.0. 'Nevercheless, muchl of the literature 19:14353 [29] [471:3] []Gý suggests thle

intensity modulation is niegligible. The modulation of phase is the leading contributor to

imiage wandering, fuzziness, and distortion. This research is therefore limited to correction

of phlase.

2.1.2 Turobulc~ice The physical property of an air pz cý!l which most influences

phiase of propagating light is its index of refraiction. This, in turn, is a func' ion of variouis

physi cal pa raiunters such as temperatuire. presýu r(_, hu minim 'y. anki 'avellelgtl 1 , to niamle a

f(-\%-.nEmpirical cqilatiolis (lscrihilig thic (lepeni(lvnce of tile index of refraction oil hiese



parameters are generally available [5:10] [18:531] 13i:101]. In the turbulent atmosphere

these physical parameters are generally functions of time and space. and hence index of

refraction is also a function of time and space. Because of the random nature of turbul,_.nce.

there is no deterministic expression of this relationship.

A popular representation [5:12] [18:336] of atmospheric turbulence considers the at-

mosphiere to consist of many parcels or "eddies" of air moving with respect to each other.

The sizes of these eddies change with time; the larger ones generally dissipate into smaller

ones. Eventually, the eddies become small enough such that their kinetic e,,ergy dissipates

into heat. The sizes of the eddies are characterized relative to L0 and 1,, quantities having

units of length and known as the "outer scale" and "inner scale" of turbulence, respec-

tively. Eddies larger than the outer scale are anisotropic and are formed by wind shear

and temperature gradieixts. An anisotropic eddy has spatial statistics which depend on

directiun [18:338]. These eddies are said to lie in the "input ranLge" since they represent

rLewly-formed eddies, inputs to atmospheric turbulence. For eddies smaller than L0 hut

larger than /o, kinetic energy effects are more significant than viscosity effects, and the

turbulence is essentially isotropic. An isotropic eddy has spatial statistics which do not

depend on direction. Eddies of this size are said to be in the "inertial subrange" since

,,,,rtia is significant relative to friction. When the size of the eddy is less than 10, viscosity

effects dominate over kinetic effects, and the eddy is said to be in the "dissipation range"

[18:336]. At low altitude L 0 is oi" the order of meters, whereas l0 is on the order of millinie-

ters. Both the local inner and outer scales of turbulence generally increase with altitude

[5:12]. Light propagating vertically through the atmosphere, therefore, encounters eddies

of various sizes and of various subranges. The end result is a randomly-distorted image

whose degree of distortion is not known without measurement.

2.1.3 Structure Functions The statistics of atmospheric turbulence are often rep-

resented as "structure functions" [37]. The presentation of the structure function here

closely follows that of Tatarski [37] and Ishimaru [18]. Any direct quotes are from the

latter source.
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Some physical characteristics associated with a given location in the turbulent atmo-

sphere can be described as raiidom processes. For exmnple, let h(t) be a random process

describing the absolute humidity at a specified location. This random function "... is not

strictly stationary," The statistics of h(t) can and generally do change with time. The

difference h(t + r) - h(t), however, is considered stationary. This property is accurate

for many atmoipheric variables. Thus it can be said the function h(t) has stationary

increments:

E [h(t + T) - h(t)] = f(r) (2.2)

where $ [.] represents the expectation operator and f(r) is a function of the time difference,

T- . The temporal structure function for this example, D(r) , is defined as:

h(7-) = E [Ih(t + r) - h(t)j2] (2.3)

The correlation function is a more familiar statistical relation:

B1,(t 1 , t2 ) = C [h(tj)h(t2 )] (2.4)

and is related to the structure function by:

'Dh(7-) = 6(t + 7,t + -) + Sh(t, t) - Sh(I + T,t) - Bh(t,1 + 7) (2.5)

The spatial analog to the random process with stationary incremcnts is the "locally

homogeneous" random function. For example, let h(r) be a random "process" describing

the absolute humidity at a specified time at location r . For convenience the h(.) function

symbology is reused here. This random function ".. is not strictly homogeneous." The

statistics of h(r) can and generally do change with location. The difference h(r_+p ) -h()

however, is homogeneous. Thus the function h(r) is said to be locally homogeneous. The

spatial structure function for this example, V(p) , is:

Th(p) = e [&o(r+ p) - h(r)ij ,2.6)
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where the 2)h(') symbology is reused for convenience. If the process is isotropic as well as

locally homogeneous, the spatial structure funiction depends only on tie magnitude of t,,

spatial separation:

"Dh(p) [ h(r + p) - 11(r) P (2.7)

A key assumption in applying the temporal and spatial structure functions to atnio--

spheric turbulence is the concept of "frozen turbuencc" [5:17], also known as "Taylor's

hypothesis" [19:133]. This assumption implies the temporal fluctuations in various mete-

orological variables at a given location are caused by a "snapshot" realization of spatial

fluctuations flowing by. Taylor's hypothesis is "usually a good approximation for optical

propagation through the atmosphere." [19:1331

2.1.4 Kolmroqorov Statistics The index of refraction n at a location r can be ex-

pressed as the sum of the mean and a fluctuation about the mean [5:17]:

n(r) = - [n(r)] + ni(r) (2.8)

where nl(r) is a zero-mean Gaussian random variable. The spatial structure function for

: isotropic random variable describing the index of refraction fluctuation is:

Vn 1 (p) (I£ [ + .p) - nl(r) (2.9)

The unity subscript in Equation (2.9) is often omitted, with the fluction definition implied.

Kolmogorov's famous result, as described by several references [6:155] [2:11] [17:22]

[31:101] [34:288] [5:19] [19:526] [9:14301, is that, for spatial separation within th inertial

subrange to <K p K< L0 , Equation (2.9) is closely approximated by:

Dn(p) = Cp 21 3  (2.10)

where C2 is the refractive index structure constant, a parameter which indicates the degree

to which atmospheric turbulence affects optical propagation [34:288]. C 2 is generally mod-

eled as a function of altitude and time of day [5:20]; several models describe it as functions
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Figure 2.1. Refractive Index Structure Constant

thereof [13:290] [5:20] [6] [37:A4] [30:102]. Two such models are the SLC-Day model and

the Hufragel-Stanley model [30:102]. Figure 2.1 shows that these widely-accepted models

are in less than perfect agreement, and that the altitude dependency of C' varies over three

orders of magnitude [30o.

Since the phase of a wavefront is of interest for many adaptive optics applications,

one may wonder if it has a structure function. Fried [9:14301 discusses the phase structure

func Lion:
"Do(p)"0(11+ _)-¢Or 1] (2.11)

which is actually defned as a phase fluctuation structure function, since ý is the deviation

of phase about the apexture- averaged phase. Based on the Kolmogorov turbulence model

and neglecting intensity fluctuations, Fried writes:

DO(p) - Ap 5/ 3  (2.12)
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where the parameter A depends on pr)pagation path, wavelength, and environmental

conditions. He then defines the coherence length parameter r0 in terms of A:

TO ý-- (6.88/1A)/ (.)

and thus:
V& = -.8 (P/To) 53(2.14)

This ro parameter is generally known as Fried's coherence length in the later literature

[29:209] [11:5501 [40:1774] [17:1596] [31:102]. lie describes it as the "diameter of a hetero-

dyne collector for wh'ch distortion effects begin to seriously limit performance". Another

interpretation is that it is the diameter of an aperture such that the rms phase distortion

is 1 radian [23). He finishes his introduction by stating that, for visible and near-Ift prop-

agation from an approximately zenith source, typical values of r0 are on the order of a few

centimeters.

An equation for the coherence length in terms of other parameters is given by Parenti

[31:102]:

o 0.185 3/(2.15)
= sec(C) f dh C,(hJ.

where

To Fried's coheience length (in)

A wavelength (m)
zenith angic of source (rad)

C2 (h) refractive index structure constant (M-2/ 3 )

h = altitude (m)

Wang and Markey [46:78] give a simplified equation for ro where propagation is from

the zenith and the refractive index structure constant is assumed to be constant along the

path:

To = 1.68(Cn z k2 -3 /5 (2.16)

where
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z = path length through turbulence (m)

k = wavenumber z 2r,/). (m-1)
C = zenith angl,_' of source (rad)

Walters and others [42:8281 present some measured values of r0 for vertical paths at

mountaintop sites in the White Sands, New Mexico region. The nighttime average (over a

seven-month period) was found to be 9.0 cm ± 4.0 cm (1-a); the daytime average was 4.5

cm ± 1.8 cm (1-c). Starlight was used as the light source.

Parenti [31:104- gives soirme estimates of r0 derived from the liufnagel-Valley and

SLC-Day models of C'(h) at 500-nm wavelength and two zenith angles. These are shown

in Table 2.1.

Table 2.1. Calculated Coherence Length

Mode Z..enith Angle r I
IIV-21 00 5.0 cm

IIV-21 450 4.0 cm

SLC-Dav 00 5.1 cm

SLC-Day 450 4.1 cm

The significance of the development presented thus far is that the effect of atmo-

spheric turbulence on optical viewing is complex. The time behavior of the quality of

the received image depends on many factors such as the wavelength, altitude-dependent

structure function constant, zenith angle, and altitude of the telescope. The wind velocity

and its altitude distribution also affect image quality,. In addition, satellite motion with

respect to the observer is a factor. The introductory discussion presented thus far could

continue to the point of having an analytically-derived statistical model of the effect of

atmospheric turbulence on image quality, but the mathematical rigor is beyond the scope

of this research. The readcr is referred to the literature for an appreciation of the rigor

involved [16]. The significant result is that no single model will be accurate for all possible

atmospheric conditions. The use of multiple models will be briefly discussed in Chapter

VI.
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2.2 Zernike Functions

2.2.1 Introduction It is obviously necessary to have some means of expressing the

phase distortion present in an inage. This section develops the use of the Zernike basis

functions as such a means.

Assume a circular aperture of diameter D is pointed at a coherent, monochromatic

point source of light located a distance L away. Further assume that L is much greater

than D. If there are no distortive elements along the propagation path, the phase of the

incident wave within the aperture would be spatially constant, i.e., the phase of any two

points within the aperture would b( the same. It could also be said for such a case, that

the phase at any point within the aperture is equal to the spatially averaged phase. Figure

2.2 shows a two-dimensional representation of this situation.

I

Figure 2.2. Planar Wavefronts at an Apercure

If a turbulent atmosphere is now introduced into some or all of the space between

source and observer, the waveflionts at the aperture will be disiorted, i.e., two points within

the aperture will not necessarily have the same phase. Furthermore the phase at any point

within the aperture will not necessarily equal the spatially averaged phase. Figure 2.3

shows a two-dimensional lepreseniation of this situation.
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Figure 2.3. Distorted Wavefronts at an Aperture

The absolute phase of the electromagnetic wave in the apertuie is a function of time

and of the spatial (polar or rectangular) coordinates within the aperture:

€ == 4(r,O,t) (2.17)

4>X ,t (2. 16)

where

0 = absolute phase
r = radial distance = V/ +
0 angular coordinate = tan-(y/x)

X = x-coordinate = r cos(O)
y y-coordinate = r sin(O)

The functions represented by Equations (2.17) and (2.18) do not have identical functional

forms; both functions are given the same name 0 for convenience. Phase can be expressed

in units of degrees, radians, or wavelengths. Likewise, z, y, and r can be expressed in units

of wavelern.ths or the length normalized by the ra(, us of the aperture.



The right-hand sides of Equations (2.17) and (2.18) are expressible in several ways.

One option might be to saiilt)l the phase at numerous locations in the plane and let the

vector of samples define the shape of the phase function. 'This "vector space" approach

has been used by AFIT researchers [3] [12) 1271 [331. Another approach, the one taken in

this research, is to express the phase as a sum of functions:

N

(o,t) = F(r,,) (2.19)

More conveniently, the phase can be expressed as a linear combination of basis func-

tions:
N

( 0, (t) Z(r, 0) (2.20)
i=-O

where the Zi(r, 0) are basis functions which span the functional space containing 0(r, 0),

and the a,(t) arc the coefficients. The choice of which set of bapSis functions to use is a

design decision. Some mentioned in the literature include Legendre [35], Karhunen-Loeve

[29) [43] [46], and Zernike [4] [9) [16] [46] [44] [7] [45) [151 [38] functions. In the case of

turbulence modeled with Kolmogorov statistics, the Karhunen-Loeve functions are not

analytic [29:210]. The Zernike set of basis functions, analytic by definition, are used as

basis functions in this research.

2.2.2 Zernike Functions The Zernike functions are the Zi(r, 0) of Equation (2.20).

Each Zernike function is a real-valued, dimensionless, deterministic function of position

within the aperture. The ai(t) are the Zernike coefficients. Each Zernike coefficient is a

real-valued function of time, with units of wavelength for this research. The i-th Zernike

function can be expressed as the product, of a radial function and an azimuthal function

[4]:

zi(,-, e) = fidr) g,(O) (2.21)

Details of generating the radial and azimuthal functions of Equation (.2.21) are available

in the literature [38:79][4]. Table 2.2 presents the first fifteen Zernike functions (0-14)

along with their radial and azimuthal order, n and in, respectively. The functions are Vlso

expressed in rectangular coordinates as well. Three-dimensional plots of the first fifteen
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Table 2.2. Zernike Iunictions

i i I n Zi(r. (-) Zi(., y)

0 0 0 1

2 1 1 2(Tj)soh(O) X __ _

2 2 0 j (2(,.2 - 1) (0)(2z2 + "1,. - ]t)

4 2 2 \2 xj+ 2 y 2.2 J

V 2 2o v/U(2) s(20) - : 2)

6 3 1 '(()- 2•(j))sn(O) •(3x2 + 3y' - 21?)y

7 3 1 x/8(3i•) 3 -2(j!))cos(O) :.3x2 + 3y- 21?2 )x

3 3 x/S(f) 3 sii(3®E) •". ( 3 2)!,

9 3 3 ,-(j,) cos(3O) ,(X2 - 3y2)Z

10 4 0 "V5(C(_L)4 - 6(_) 2 + 1) (6(z2 " y2 ) 2 - 6]?,2(' Y 2 ) + . 1 )

11 4 2 V-(4( _ 3(ý))cos(2e) J.L,.2 + .y2 3li 2 )(z 2  2 y2)

12 4 2 v/Y0(4()4 - 3( r)2) sin(2') 2-(4 X2 4Y2 -

13 1 4 V _n() 4 cos(40) ,(- 6x-y 2 + - 6x)

14 4 4 ,/"()- 4 sin(40) 0-4,._1 (X2 - 2),y

Zernike function are shown ii, Appendix A.

One advantage of using the Zernike functionil space is that the functions correspond

to aberrations commonly studied in optics [20:196]. Table 2.3 shows the names of the more

common ones. By convention, x-tilt is defined in this research to be tilt about the x-axis.

The Zernike functions form ail orthogonal basis set which satisfies [38:79]:

1 [02" rR
2I. k7 dO] dr r Zi(r, (1) Z3(r, 0) = ý,) (2.22)
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Table 2.3. Zernike Function Names

i Aberration

0 piston

I y-tilt

2 x-tilt

3 focus

4 astigmatism

5 astigmatism

6 coma

7 coma

where bij is the ,ronecker delta:

6ij (2.23)

As shown in Appendix C, a consequence of Equation (2.22) is that the root-mean-square

(rms) value of phase in an aperture is the square root of the sum of squares of the corre-

sponding Zernike coefficients:

VO +a2 +a2 +... a2(2.24)

The expansion coefficients for an arbitrary phase associated with Equation (2.20) can be

obtained by [38:79]:

ai(f) = f dO f d- r W(r,O)O(r,O,t)Z,(r,O) (2.25)
f 40 f dr r W(r, 0)

where W(r, 0) is the aperture weighting function defined by 138:79]:

1 r <R
W(rO) r>R (2.2G)

0 r>R
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It should be noted that this definition of W(.-,0) is selected to be consistent willi the

scaling coefficients in Z4(r, 0). For a circular aperture of known radius, the pliase within

the aperture at a givei, time can also be expressed in shorthand notation as a vector a of

expansion coefficients:

S ) (t) = [ o() ,i(t) a2 (t) ... aG,(t) I(2.27)

Post-multiplication of ,)-T(1) by a column vector of N + 1 Zernike functions is implied in this

notation. In general, N = oo is required to obtain an exact description of an arbitrary phase

front in terms of basis functions. Based on spatial Nyquist consideration of the actuator

and wavefroi.z sensor geometry for the optics system at the ArWL, and of relative mean

square phase error content of each Zernike mode in the presence of Iolmogorov-modeled

turbulence (see Appendix B), the truth model in this research is selected to consist of the

first tifteen Zernike modes (1\=14).

As an example of what an arbitrary sum of the first 15 Zernike functions would look

like, Figure 2.4 shows a plot of Equation (2.20) for a coefficient vector of:

a T(t)[ 2 0  1 1 1 1 1 1 1 1 1 1 1 1 1 1 (2.28)

The zeroth Zernike mode (i.e. piston) is not a distortive contributor. Also, it is not

measurable by the sensor used to measure wavefront disturtion. Thus we can subtract the

piston contribution from the absolute phase and obtain a functional space which describes

the deviation in phase from the aperture-average phase. From this point forward, only

Zernike modes 1-14 are considered, and 0(r, 0, t) is redefined to be the deviation from

aperture-averaged phase, also termed phase distortion. Thus, using the shorthand notation

introduced earlier:

O(T, 0, t) .* a'T (M= al(t) a2(t) - a; 4 (t) ](2.29)
Figure 2.5 shows the same plot as Figure 2.4, but with the piston (i.e. average phlse) not

included.
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Figure 2.4. Weighted Sum of Zernike Functions 0-14

One fiiial topic is required to be discussed regardiiig Zernike-function description of

optical phase deviation-scaling. The question is, if a large aper.ure sample of an incoming

wavefront is focused into a smaller aperture. what is the effect on the expansion coefficients?

The answer is: nothing. For example, consider the geometry of Figure 2.6. Aberrated light

from a distant source enters a one-meter radius circular aperture. Assume the aberration

consists of ten wavelengths of x-tilt across the aperture. At this large aperture:

2
a(z, 2 )=aZ 2(zy)= a-y = 2a 2 y (2.30)

At y ;1 the phase deviation is five wavelengths; therefore a, = 5/2 for the large

aperture.

By' passing through a set of perfect lenses, the size of the image is reduced to a circle

of 0.1 -meter radius. At this small aperture:

0'(x, y) -= a• Z2(x, y) = a2 20 y (2.31)
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At y=0.i, the phas~e deviation is still five wavelengths; therefore a' = 5/2 for the small

aperture as well. This same reasoning can be extended to all the Zernike modes. This

aperture invariance is convenient for imaging applications, since generally a large-aperture

telescope gathers light, a medium-aperture deformable mirror processes it, and a small-

aperture wavefront sensor measures its distortion.

2.3 Stochastic State-Space Modeling

The development of a Linear Quadratic Gaussian (LQG) contiol law requires a linear

stochastic state-space model of the system of interest. The required forms for continuous

dynamics and discrete measurements arts 124:169]:

i(t) =F(t)x_(t) + B(t)u(t) + G(t)_w_(t) (2.32)

z,)=H(t,)x_(t,)~ + v(z1 ) (2.33)

where
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Figure 2.6. Change in Radius

S_(t) time rate-of-change of system state vector
W(t) system state vecLui
F(t) = state dynamics matrix
u () = deterministic input vector
B() = input distribution matrix
w(t) = zero-mean white Gaussian driving noise vector
G(t) = driving noise distribution matrix
z(t,) = discrete measurement vector
H(t,) = discrete output matrix
X(t) = zero--mean, discrete-time white Gaussian measurement noise

The strength of the zero-mean white Gaussian driving noise w(t) is defined by

[24:155]:

e{w(t)wT(')} - Q(t)6(t - ') (2.34)

where Q(t) is the noise strength matrix and 6( ) is the dirac delta.

The covariance of the zero-mean measurement noise v(tj) is defined by [24:174]:

1kv(t,)vT(t) = PR(ti)62 , (2.35)

where R(t,) is the noise covariance matrix.
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The dimensionalities of the vectors and matrices associated with continuous dynamics

and discrete me:tsurernents are given in Table 2.4 [25:91.

Table 2.4. Dimensionalities of State-Space Matrices and Vcctors

Matrix/Vector Dimension
i ,,nx

F(t) n ×S x__'(t) n× 1

B(t) v x r

*0t rx I

G(t) n x s

Lv(t) s x 1

Q(t) S x×S
z_(i1 ) mXl1

H(t) m x n .

X(t,) m x !

R(ti) m x r.

If the dynamic system and measurement device are time-invariant, which was as-

sumed for the nominal models of this research, the time-dependence can be dropped from

the notation associated with the defining matrices:

:*(t) = rE(t) + Bu(t) + Gw(t) (2.36)

z(ti) = Hx(ti) +v(t,) (2.37)

The dynamic driving noise strength and measurement noise variance lose their time-

dependency and become Qand R, respectively. Such time invariance implies that the

statistical behavior of the system does not change with time.

Kalman filters, which will be discussed shortly, often model the continuou.-time

system dynamics of Equationi (2.36) in thc: discrete-time domain. An 'equivalent" discrete-
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time model of the linear system dynamics can be written as [24:171]:

x_(t,+i) = 4,(t,+1 - tj )2(t,) + Bdu(,) + wKd(tj) (2.38)

where 4)(ti+l - ti) is the n x n, time-invariant state transition matrix associated with

F [24:41] and the zero-mean discretized driving noise Ž_4 (t,) has strength Qd defined by

[24:171]:

={L(tt)2xT(1j)) = = 4(ti+ - ')GQG 4P(t,+i - r) dr] (.1 (2.39)

The discrete-time input distribution matrix Bd is defined by [24:171]:

Bd = /"+ .4(t1 +l - T)B d7 (2.40)

Chapter III presernts the definitions of these vectors and matrices in terms of the

adaptive optics system of this research.

2.4 Linear Quadratic Regulator

The simple LQG regulator concept is based on the assumption that there are costs

associated with nonzero states (x) and nonzero control inputs (n_). Furthermore, the costs

are assumed to be quadratic in nature, that is, the cost is proportional to the weighted

squares of the states and/or control inputs. Maybeck [25:10J defines a simple form of

quadratic cost function as:

J= 1 [xT(,)x(tK)x(t)+_MT(1J)U(ti)1(ti)] + X (tN+l)Xfx(tN+1) (2.41)

where to and tN+l are the start and final times, respectively. The i and N are time indices

hiere and should not be confused with their use as mode indices in Zernike functions. A

more general cost function includes cross terms between states and control inputs [25:73],

but this extension is not used here.

The design of the LQG regulator involves determining the optimal input voltages to
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the mirror, u*(ti), which minimizes the right-hand side ofEquation (2.41). Minimization

of this cost must be related to minimization of the phase distortion in the image reflected

from the deformable mirror (maximizing performance). This relationship is implemented

via the weighting matrices X(tj) , U(ti) , and X1 .

Since only noise-corrupted measurements are available, a Kaiman f'ter is used to

estimate the states (X,) given the measurements. Figure 2.7 shows a block diagram of a

generic LQG controller. In the context of the adaptive optics control of this research, the

z(ti) are the discrete-time measurements fiom a Hartmann slope sensor, and the u(ti) are

the mirror control voltages.

j!±1KAL. FILTER

f lol

L

I-f~ia a 5ry

Figure 2.7. Block Diagram of LQG Controller

2.4.1 Kal'man Filter The Kalrnan filter for the simple LQG controller can be de-

signed separately from the regulator due to the certainty equivalence principle (25:171.

The Kalman filter accepts as inputs the measurements z(ti) and generates an estimate of

the system state, _i(t,). It accompli.hes this by using ain internal model of the system to
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propagate this state estimate and its covariance, P , and then updating its estimate by

appropriate processing of measurement.-. The filter covariance is:

P = S{[x ) - ][ } - g_]T} (2.42)

As will be seen shortly, in a Kalman filte: this covariance is not dependent on the actual

values of the measurements.

IKalman filter operation can be divided into two sequential processes involving the

filter state estimate and covariance: propagation and measurement update. Propagation

is the change in the state estimate and filter covariance as measurement-free time elapses.

The measurement update process is the change in the state estimate and filter covariance

as a set of measurements is processed. The governing equations are [25:18-19]:

', - I4t -1 -) (. . " (2.43)_(•,.) 1 ,(t, - •;_ •,,;_)P t d ,,,u ,•
P(t') - (ti - 1 )P(t 1 )4T(ti - ti-1) + GdQdGT (2.44)

IK(t) P(tz,)HT [(IP(tT)HT + R]-1 (2.45)

R(t) () + K(ti) [ R - (2.46)

P(tl+) = P(t-)- K(ti)HP(tT) (2.47)

wheire

= estimate of x at start of t,-I - t propagation cycle
P(t,+ 1 ) = filter covariance at start of ti-] - tj propagation cycle

"�= estimate of x at end of propagation cycle at time ti
P(t) = filter covariance at end of propagation cycle at time ti
K(t;) = Kalman filter gain at update time
z. measurement realization at update time

estimate of x just after update
P(t•) = filter covariance just after update

The Kalman filter gain equation implies an on-line inversion of an m x m matrix.

If the number of measurements is greater than the number of states (rn > n) then an
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alternative measurement update may be preferred [26:54]:

P(( ) ( + 11[RPIl-] (2.48)

K(ti) = P(4)HTR-1 (2.49)

This form implies on-line inversions of matrices having dimensions of nz x ?.

2.4.2 Liucar Quadratic Regulation As derived by Maybeck [25] using a dynamiic

programming approach, the optimal control input can be written as:

u"~* = -G i(i,) (2.50)

Assuming time-invariant cost matrices, the optimal controller gain G*(tj) is

G*(tj) U U+ B7'K,:(ti+,)Bd]-BTKc(ti+I)41(ti+l - ti) (.

where hlie controller Riccati matrix Kc(ti) is propagated via the backward Riccati difference

equation [25:15]:

K,(ii) = X + DT(ti'. - ti)Kc(ti+,,)4(tj+1 - ti)

-PT(tj+1 - tj)Kc(t~il)Bd [U + B•IKc(t1 +1 )Bd]-'

xB7K, ,(t,+ ) ,+ - Li) (2.52)

from the terminal condition:

K!(tp. +1) = Xf (2.53)

This backward Riccati equation generally exhibits a terminal transient as tN+i is ap-

proached. If the .system is never expected to reach the terminal condition, i.e., if iv+l = 0o,

then the steady-state solution to the backward Mtccati equation can be used for K, for all

bounded time. Substituting this K, into Equation (2.51) yields the steady-state controller

gain G*.
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2.5 Surnmary

Light traveling through atmospheric turlbulence is subject to spatial and temporal

variations in index of refraction along the propagation path. These, variations result iii

phase distortions in formed images. The statistics of such distortions are dependent oji

temporal and spatial characteristics of the atmosphere. The structure function expresses

the random nature of sone, of these statistics, and is the foundation upon which much of

the literature builds.

A quantitative description of the phase distortion in an image can be expressed as

an infinite sum of weighted Zernike basis functions. That the phase distortion is not

necessarily time invariant is expressed in the time-dependency of the Zernike coefficients.

Linear Quadratic Gaussian (LQG) control is one approach to controlling a dynamic

system. Such a system is expressed in state-space form as a set of linear dynamics equations

and a set of linear measurement equations. LQG control utilizes estimates of the systemr

state to derive a set of control inputs, the goal being minimization of a cost function. For

the adaptive optics system, t!he pi.ase distortion in an image reflected from a deformable

mirror is to be minimized.
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III. Stochastic Alo.els

3.1 Adaptive Optics System

The adaptive optics system of interest is a ground-based telescope which is used to

observe artificial earth satellites. It is assumed that a monochromatic, coherent source of

514-nm light is within the same isoplanatic patch. It is also assumed that the light intensity

is of sufficient strength to be seen against background light. A simplified schematic of the

adaptive optics system is shown in Figure 3.1. The key components to be modeled and/or

designed arc:

1. Atmospheric distortion

2. Deformable mirror

3. Wavefront sensor

4. Kalman filter

5. CGntroller

The development which follows treats these topics in the order indicated. The overall

system states will consist of the atmospheric distortion Zernike coefficients augmented

with the Zernike coefficients corresponding to the mirror shape.

3.2 Atmospheric Effects

Based on Taylor's frozen turbulence concept introduced in Section 2.1.3, the temporal

statistics of image distortion can be modeled as the spatial statistics "blowing by." A

common analytical way of implementing these temporal statistics is to let the phase front

distortion in the receiving aperture be modeled using Zernike basis functions, and let the

Zernike coefficients (i.e. the elements of a_.(t) where the subscript a denotes atmosphere)

be outputs of shaping filters. [163. According to Noll [29:210], these Zernike coefficients

are well-modeled as zero-meaii Gaussian random processes. Gaussianness results from

the summation of the distortions from each atmospheric layer of turbulence traversed.

The turbulence of each layer contributes a random increment to the final set cf Zcrmlikc:
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Figure 3.1. Simple Schematic of Adaptive Optics LQG Control

coefficients of phase distortion. The central limit theorem states that. the sum of many

such independent random contributions is Gaussian.

The general equations describing the atmospheric distortion shaping filters are of the

form:

x(t) = Fox.(t) + G 0 •(t) (3.1)

The Fa, Ga, and Qa are modeled in this research as time invariant. Absence of a Bu_(t)

term is due to the atmospheric distortion being uncontrollable. The dimension of x_(t)

will in general be greater than the number of Zernike modes modeled, since each Zernike
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coefficient may require multiple shaping filter states.

lor this research atmospheric distortion is modeled as consisting of Zeriti':e modes

1-14. The processes a_(l) corresponding to these 14 coefficients can be extracted from

the total distortion state vector &(t) via multiplication by an extraction matrix A

_(t) = A,(t) (3.2)

The vector a•(t) denotes the Zernike coefficients of the image phase distortion (excluding

piston) entering the adaptive optics system.

One means of designing atmospheric distortion shaping filters (i.e. F 0 , G. and

Q0) would be to plot actual power spectral density (PSD) (ata for each Zernike coeffi-

cient, based on collected data. For added authenticity, the data could be collected using

ground-based sensors at the actual telescope site. Having the PSDs plotted, straight-line

approximations could be drawn to determine corner frequencies and strengths of shaping

filter driving noise. Actual PSD data is unavailable for this research, but does exist [23].

Glasson and Guha [10:13] use this approach to model the phase distortion due to atmo-

spheric turbulence for the first five Zernike modes. 'They accomplish this modeling by

fitting a series of straight lines to simulated power spectra] density data.

Another approach for designing the atmospheric distortion shaping filters is to sim-

ulate the Zernike coefficients' autocorrelation kernels from analytically-derived equations,

followed by curve-fitting to standard shaping-filter equations. Derivation of the required

analytical relations is beyond the scope of this research, as Section 2.1.4 points out. Ap-

pendix D presents the details of generating the simulated autocorrelatior, kernel data and

the use of curve-fitting the data to shaping filter functions. Also presented in Appendix D

are the matrices F,, and Q, of Equation (3.1) as well as the extraction matrix A of Equa-

tion (3,2). The software developed to generate simulated autocorrelation data is archived

at AFIT [39].
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3.' Mirror

This research assumes the mirror is a monolithic deformable mirror with 129 (97

active) eve'ily-spaced actuators, manufactured by Itek. A sample of this mirror is at the

optics laboratory at the AFWL. The mirror con.ists of four major components: facesheet.

base, electronic circuitry, and actuators. The facesheet is a monolithic piece of ultra-low

exoansion glass (ULE). The 129 actuatoi pusher pads are precisely machined into the back

side of the facesheet. The base is made of similar ULF to minimize any relative thermal

expansion ellects, i.e., lateral forces on the actuators 121:1].

Each of the 129 piezoelectric actuators is constructed from layers of lead magnesium

niobate (PMN). Each actuator is epoxied to both the facesheet and the base. The actuators

are electrorestrictive, meaning either a positive or negative voltage causes the actuator to

contract, i.e., the piezoelectric stack to "shorten." To inake two-way excursions of the

acLuatui possiblc, the stack is biased to -150 volts. Thus, application of a positive voltage

reduces the total voltage magnitude, causing the stack to expand. Application of a negative

voltage increases the total voltage magnitude, causing the stack to contract. The maximum

magnitude of applied voltage allowed is 300 volts (21:1).

Application of these large voltages to the actuators is controlled by a control voltage

whose range is ±10 volts. A -10 volt control voltage corresponds to -150 volts applied;
making the total voltage magnitude 300 volts. A +10 volt control voltage corresponds to

+150 volts applied, making the total voltage magnitude 0 volts. Thus, positive control

voltage causes the stack to expand; negative control voltage causes it to contract [21:1j.

Of the 129 actuators on the mirror, only the central 97 are actively controllable.

The Itek Operation Manual [21:4] states the remaining 32 could be made independently

controllable by the addition of respective driver electronics. At present, these extras are

tied to a bias voltage to provide fixed boundary conditions. Figure 3.2 shows the location

and numbering scheme for the 97 active actuators, assuming the manufacturer-specified

0.83-cm spacing.

It should be noted that the configuration of this mirror at the AFWL optics develop-

ment laboratory has only the central 69 actuators independently controlled; the remaining
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Figure 3.2. Acuator Locations on Itek 97-Actuator Mirror

28 are slaved to the nearest neighbor within the central 69 [23]. This arrangement is used

to implement the so-called "zonal" approach to mirror control in which each actuator cor-

responds to a spatial sample of the image in tbc neasuremnent device. In this case, the

Hartmann wavefront sensor (to be discussed in Section 3.5) has 69 subapertures. This

research, however, uses the so-called "modal" approach, which implies control of (Zernike)

modes of the distortion. Greenwood 111:549] states, without justification, that the de-

grees of correction possible with either approach are similar. He further states the current

(1978) preference is the zonal approach. Southwell [35:1006i, on the other hand, argues

that reconstruction of the phasefront from llartmann-type sensor measurements appears

to be superior for the modal approach. This research will not compare one approach to

the other; the zonal approach is merely mentioned to explain the AFWL configuration.

This research assumes all 97 active actuators are driven.
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Tie mirrored surface of the faceshieet in front of the 97 actuators lies within a 4.25-

cm radius opening in a circular bzel. 'li'ms the effective diameter of the mirror aperture

is 8.5 clii. Table 3.1, condensed froin the Itch Operation Manual [21:6]. shows add 'ional

mirror parameters.

Table 3.1. AFWL I)eformnable Mirror Characteristics

Facesheet material "ULE

Clear aperture 8.5 cm

Number of actuators 97 controlled + 32 biased

Actuator geometry Square arra:y, ii across diameter

Actuator spacing 0.85 cm

Ilysteresis None observed

Stroke 3.91 microns (mean)

Surface figure N/10 p-p A 0.6328 Y

Coating Protected aluminum

Reflectivity >84%

Actuator bandwidth 500 Hz

Operating temperature 20OC-30 0 C

Package size 12-inch cube

Linearity of a single actuator implies that the graph of local mirror displacement

versus control voltage is a straight line. AFWL performed such measurements on a few

actuators; one of their plots is shown in Figure 3.3 [22]. Because of the flattening at the

ends of the control voltage range, the behavior is not strictly linear. Ihowever, over a

reasonable range of control voltage, the function is approximately linear. The design of

the controller assumes a linear model. It is expected that an appropriate weighting matrix

in the cost function will keep the control voltage within the linear range most of the time.

Linearity of the collection of actuators implies inter-actuator superposition holds. For

example, applying one control volt to actuator # 39, measuring the mirror response, hlen

applying one control volt to actuator J 59. and adding the responses should yield the same
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Fig-are 3.3. Sketch of Actuator Displacement Linearity

total response as applying the voltages simultaneously. Such multi-actuator measurement

data are not available for this mirror, but this research will assume superposition holds.

The literature contains precedent for the validity of thc- superposition assumption 11:311.

3.3.1 Stendy-Stote Mirror B-ehatior It is expected and desired that application of

a control voltage to an actuator will cause the- mirror to deform. This deformation, how-

ever, does rot occur instantaneously; a finite time is required for the mirror to attain

its "steady-state" position. This section of the report addresses the relationship between

applied control voltage and the steady-state mirror response. The eventual goal is to re-

late a vector of 97 control voltages to aL vector of 14 resulting Zernike coefficients. Trhese

",mro" Zernike coefficienits add t~o the 14 L"atmospheric" Zernike coefficients of the in-

cident atmosphere- aberrated light, hLopefully. cancelling them. Thus, reflection from the

defOruLable mnirror is modeled as the addition of atmospheric Zernike coeff-icients to the

mirror Zernike coefficients.
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The influence function is a mathematical representation of the effect of a single ac-

tuator voltage on the local mirror shape. Usually, the influence function is nonzero only

in the vicinity of the actuator: the influence function of an actualor has a limited spa-

tial domain. Several factors affect the influence function of an actuator. These factors

include piezoelectric type, facesheet material and thickness, proximity and geometry of

neighboring actuators, and actuator linearity. Based on the previous assumptions of actu-

ator linearity and evenly-spaced geometry, it is assumed that all actuators have tie same

influence function. The fact that the word "mean" appears in Table 3.1 for the actuator

stroke parameter implies that each actuator does not have the same influence function.

Nevertheless, this research assumes uniformity of the 97 influence functions.

Limited influence data is available for the Itek mirror at the AFWL. Itek provided

data corresponding to a two-dimensional slice of the influence function for the central

actuator, #49. This slice was taken along the mirror X-axis, spanning actuators 71, 60,

49, 38, and 27. Itek's plot of this data is shown in Figure 3.4. The magnitude of the voltage

applied to the actuator was 200 volts for this data. Influence data was also available along a

45-degree slice through the central actuator. This data showed less of a negative excu:sion,

but was of the same general shape as the slice along the X-axis. Thus, it is assumed that

the slice through the X-axis is approximately valid in any direction. The ordinate data

(X) used to plot Figure 3.4 were convertcd into units of cm. The abscissa data were

converted into 2-way decrease in path lenigth, measured in wavelengths of 514-nm light.

The abscissa data were then scaled to represent one volt of control voltage, invoking the

linearity assumption. The transformed data were curve-fit to a tenth-order polynomial in X

truncated at X=±1.6739 cm, the spatial domain of influence. The truncated function was

then rotated about the actuator axis (i.e., the "Z" axis) resulting in the three dimensional

influence function of the central actuator. This influence function, when expressed in

mirror coordinates, yields:

f(X,31,XA,YA) = {0.9673 (3.3)

--2.7126 I - XA) 2 + (1 - YA)2]

+2.943 [(A - XA + -
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Figure 3.4. X-Axis Slice of Actuator #49 Influence Function

-1.573 [(X - XA" + (Y -YA)2 13

+0.41.37 [(X - XA) 2 + (Y - YA )2]1

-0.04236 [(X - XA )2 + (Y -, YA)215~

X u- ([1.67391' - [X- XA) 2 + (Y - YA)1)} (3-4)

where

X, Y = coordinates of point on mirror (cm)
XA, YA = coordinates of actuator (cm)

U.,- unit step function
f = 2-way path-length decrease (wavelength/ volt)

3-9



Figure 3.5 shows the three-dimensional piot of the influence function for the central actu-

ator. Note the X,Y units are cm, whereas the "Z" units are wavelengths. This accounts

for the extreme protruding appearance of the plot.

-55

-2..5

-2..5

-5

Figure 3.5. Approximate Influence Function for Actuator #49

At this point, a mental example is helpful. Suppose a perfectly planar wavefront is

incident on the mirror. Further, suppose that one volt of control voltage is applied to an

arbitrary actuator, all other control voltages being zero. Let the X,Y position of interest

be right at the actuator, i.e., X = XA and Y = YA. Therefore, the value of f at that

actuator is 0.9673 wavelengths. Actually, the mirror only moves 0.4836 wavelengths at the

actuator, but this causes the path-length of the reflected light to be reduced by twice as

much and f is defined to be such reduction in path length. Suppose the light reflected

fiom the entire mirror then passes through an aperlure of the same "ameter. The light

in this aperture corresponding to that reflected from the extended actuator reaches the

aperture first since its path length is shorter. Thus, its absolute phase is a larger value

than that of the liht from the rest of the mirror. Therefore, a plot of the phase deviation
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in the aperture looks exactly like the influence function plot with piston subtracted out.

The previous discussion can be extended to the case where control voltages are ap-

pli, "I to all 97 actuators. Assume that t] e light incident on the mirror is ;1,,rfectly planar.

Thus any phase distortion in the reflected imag(, will be solely due to tii,. mirror shape.

All 97 actuators are then excited by arbitrary but time-invariant control voltages. When

the mirror's shape reaches steady state, a snapshot of the phase distostion in tlhe reflkctCd

image can be obtained by subtracting the spatial-average phase (i.e., the piston). An

appropriate equation for the phase distortion in the reflected image is:

¢(X,Y) = E f(X,Y. XA,YA)u(A) - f(X,Y, XAYA)u(A) (3.5)

Equation (3.5) represents the mirror's contribution to the distortion of the reflected image.

Since the left-hand side is phase deviation in an aperture, it can be expressed as a linear

combination of Zernike functions Z, through Zoo. For this research, the atmospheric

distortion is modeled as the first 14 of these. It then follows the mirror will only be trying

to correct only the first 14 modes. Thus the significant phase deviation caused by some

operational set of commands to the mirror can be modeled as linear combinations of the

first 14 Zernike functions (as usual, excluding piston):

14O(x, Y) izi (x, Y) (3.6)_--.

The ai Zernike coefficients can be determined using Equation (2.25), expressed below in

rectangular form:

a, = f dY f'dX W(X,Y) O(X,Y) Zi(XY) (3.7)
f dY f dX W(X,Y)

Substituting Equation (3.5) into Equation (3.7), and realizing that the product of piston

arid any non-piston Zerrnike function integrates to zero yields:

fdY f dX W(X,Y) [F97 f(XYXAYA)(A)Z(XY

0i - f dY f dX W(X,Y) (3.8)
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One can then then pull the summation outside the integrals, and commute the scalar

control voltage:

97= f dY f dX W(X,Y) f(X,Y.XA,YA) Zi(X,Y) [1 A)J (3.9)
A=I i"fxwxy

Equation (3.9) can b,2 expressed in vectcr form:

ai'-. - u (3.10)

where the A-th comp( nent of tlbe m vector is the projection of the A-th actuator's infi'Ience

function along the i-th Zernike function. Likewise the A-th component of the u vector is

the control voltage on the A-th actuator. Equation (3.10) can be written for each Zernike

function:

G Mi 1d2 MU AT

(3.11)

a 14 = mT u

Finally, Equations (3.12) can be combined into matrix form as:

a =Mu (3.12)

where a is the vector of Zernike coefficients describing the rrjiror's steady-state contribution

to the distortion of the reflected image. The matrix M is the steady-state influence matrix,

since it relates the steady-state influence of the mirror to the applied control voltages. Each

element of the matrix is the projection of an actuator's influence function along a Zernike

function direction. The Fortran program which calculates the M matrix for this research

is archived at AFIT [39]. The resulting M matrix is shown in Appendix E.

In order to check the reasonableness of the steady-state influence matrix, it was

decided to perform a test. The test consisted of analytically determining the required
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control voltage vector to cause the reflected image to consist of a selected Zernike mode,

assuming perfectly planar incident light. Then the resulting voltage vector was applied

to the mirror in a mathematical simula: ion to see if the resulting phase deviation plot

"looked like" a plot of the selected Zernike function. The 14-th Zernike function was

selected because of its high spatial frequency content relative to the other modes. If the

mirror is able to reproduce the 14-th mode uell, it should be able to reproduce lower- order

modes as well. An arbitrary value of a14 was chosen, with the remaining coefficients set to

zero. Equation (3.12) was then solved for the required voltage vector[14:35]:

u = MT (M MT)_1 a (3.13)

This is the unweighted, minimum-norm solution. This series of matrix and vector op-

erations resulted in a set of 97 control voltages. A Fortran program was then used to

simulate the phase deviation caused by the set of voltages and generate plotable results.

Comparison of Figure 3.6 with the plot of the 14-th Zernike function in Appendix A lends

credibility to the calculated M matrix.

ff;i

Figure 3.6. Simulated Mirror Reconstruction of 14-th Zernike Mode Phase Distortion

3.3.2 Transient Behavior Up until now, only the steady-state behavior of the inr-

ror has been considered; the mirror has been given time to respond completely to the input
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control voltages. Now the transient behavior of the mirror wili be considered. The mirror's

manufacturer description states that an actuator acts as a electrical capacitive load [21].

It is thus reasonable to expect that application of a step control voltage to an actuator

does not result in a step response, but rather, an exponential approach to an asymptote.

The Operation Manual [21:61 for the Itek deformable mirror indicates the mean band-

width for the actuators is 500 liz. AFWL bandwidth data [22] is generally in agreement.

Figure 3.7 is the AFWL plot of the frequency response for one of the 97 active channels.

For this particular actuator channel, the -3-dB frequency is 497 Hz. It is assumed this

?C:29-4~ 2 m-V'.~I2 d[3

y -n. 017 IS •- ,
FREQ RESP
1. 2Sr

- i II I 00 1

0--

t ___ I ___.. _ __ __ _I '
113. 0;~

-70. 01 .±1]

F-----Ii____

I~ H= UINMOL) CHAN' W713 Re 1. k

Figure 3.7. Frequency Response of An AFWL Mirror Actuator Channel

plot includes the effects of the driver circuitry dynamics and the mirror dynamics. The

approximate slope of the rolloff is -10 dB per decade of frequency, which confirms the

presence of a first order pole. It is assumed the decibel values plotted are normalized with

respect to the low frequency responscŽ:

# of dB = 10log (3.14)[R(0)2J



where R is the the ratio of sinusoidal excitation magnitude to sinusoidal response magni-

tude. Assuming the dynamics of the mirror are first order, time-invariant, ;Lnd determin-

istic, the dynamics equation for the displacement at the actuator site for control-voltage

excitation of the actuator can be modeled by the scaIar dynamics equation:

g(t) = c g(t) + d u(t) (3.15)

where 9 is the decrease in 2-way path-length of light reflected at the actuator (i.e., twice

the actual physical displacement of the mirror at the a'tuator site). The values of c and d

in Equation (3.15) will now be analytically determined, using the bandwidth value and the

peak displacement of the assumed influence function, Equation (3.4). Taking the Laplace

transform of Equation (3.15) for zero initial displacement and rearranging yields:

oU(s) = dos)(..G
u (S) (S)

S--C

The s is the Laplace complex variable. Now if the control voltage input is switched from

zero to a sinusoidal voltage at time t=0, the input Laplace transform can be found from a

one-sided Laplace transform table [8:772):

u(t) = sin wt, t > 0 (3.17)

U(S) = ;- (3.18)~2+ W2

Substituting this into Equation (3.16) and again referring to a Laplace transform table

[8:772] the time-domain response can be obtained:

g(t)= (d)(w) (c2 --i + __/_- _ sin (t - tan-' , t > 0 (3.19)

Since c < 0, the exponential term in the above equation vanishes as . o. Thus, after

the transient response has died out, the sinusoidal "steady-state" response is:

gs(t) -- sin (Wt -tan- - t > 0 (3.20)
VC_ TW U \ L-- -. ;
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At zero frequency, the amplitude of g is merely ý. At the bandwidth frequency (assumed to

be 500 liz, or 1000r. rad/sec), the amplitude of g should be 7 g. Therefore the equation

1 d d (3.21)

72 c v (777-10007)2 3.

can b- 3olved for c, yielding

10007•
c -_;ý sec~

S-2222 sec- 1

1
- 1 (3.22)0.00045 sec

Thus it can be said the time constant of a typical actuator is approximately 0.45 millisec-

onds.

From Equation (3.4) the steady-state value of 9 for a unit step control voltage u(t)

is 0.9673 wavelengths. The left-hand side of Equation (3.15) is zero at steady-state for a

step input. With zero on the left-hand side and u,(t) set equal to one, Equation (3.15)

can be solved for d. The resulting value for d is:

d - C g'(i)
u 7((t)
•--(-) g88(t) -

U35(t)

- (ooo.) (0.9673)

1
wavelengths

S2150 volt sec

Thus the dynamics of an actuator can be approximated by:

X(t) = 0.0004 g(t) - 2150 u(t) (3.23)
0.000;45

The validity of Equation (3.23) for any actuator obviously depends on the assumptions

of all actuators having the same influence function and bandwidth. Also the dynamics

3-16



are assumed to be deterministic. With additional statistical data on the bandwidths and

influence functions of all actuators, 97 versions of Equation (3.23) could be written. Also,

the noise in th,. control voltage could bt modeled, causing the addition of a stochastic term

to the equations. This research assumes the deterministic Equation (3.23) is valid for all

actuators.

The pievious discussion of dynamics at the actuator site can be extended to the phase

distortion over the entire mirror. It is desired to formulate the dynamics of the mirror in

the form of:

*mn(t) = Fmm(f) + Bru_(t) (3.24)

where the elements of vector x,(1) are the time-varying Zernike coefficients which de-

scribe the mirror's contribution to the phase distortion in the reflected image. The lack

of stochastic terms is an engineering assumption. Tlh• previous assumption of identical

actuator bandwidths implies the entire mirror has the same bandwidth, and therefore the

same time constant. If a set of 97 control voltages is simultaneously applied to the mirror,

therefore, the dynamic behavior of the entire mirror surface would exhibit behavior indica-

tive of a 0.00045-second time constant. Thus, if 0,(X, Y, t) is the mirror's contribution

to the phase distortion in the reflected image then the following scalar equation can be

-A'ritten:
2T

4 m(X, 1, t) = - 0m (X. Y, t) + bW(X, 1') _(t) (3.25)

The vector of functions bn(XY) maps the voltage of each actuator to the rate-of-change

of phase at point (X,Y). The phase distortion introduced by the mirror, im(X,Y,t),. can

be approximated by a linear combination of a finite number of Zernike basis functions:

0,,(X, Y, t) ;z- al(t)Z(X, Y) +- a2(t)Z 2(X, Y) +... + a14(t)Z 1 4(X, Y) (3.26)

Taking the time-derivative of Equation (3.26) yields:

P•,(X,Y,t) z &1(t)Z 1(X,Y) " b.2(t)Z2(X, Y) + i-14(t)Z 1 4 (X,Y) (3.27)
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An immediate temptation is to write these two equations in vector form, followed by

substitution into Equation (3.25), which would yield:

(L)Tz(xy) = -a(t)TZ(X, Y) +- bh'(X, Y)!(t) (3.28)

To get Equation (3.28) into the form of Equation (3.2'1) wihi the Zernike coefficients

being the states, one is further tempted to take the transpose of both side- of Equa-

tion (3.28), then premultiply both sides by the vector Z(X,Y), then premultiply both

sidesby the matrix inverse [(X,Y)ZT(X,Y)]-. The problem with this approach is

that [Z(X,Y)ZT(XY)] is a rank-one matrix whose inverse does not exist.

To get Equation (3.25) into the form of Equation (3.24), use is made of the orthog-

onality property of the Zernike functions. Substituting Equations (3.26) and (3.27) into

Equation (3.25) yields:

14 14 97

Z d(t)Zj(XY) =--Zaj(t)Zj(XY)) - bj(X,Y)u 2 (f) (3.29)
t=1 i=! j=.

Multiplication of Equation (3.29) by Z,(X, Y), then spatially integrating both sides of the

equation over the area of the mirror aperture-using Equation (2.22) where appropriate--

yields:

-- ci (t U&j(j) (3.30)

The vectora- is defined such that its j-th element is the projection of the function bj(X, Y)

into Z1(X,Y). Multiplying Equation (3.29) by each successive Zernike function and fol-

lowing the integration procedure yields the set of equations:

1 1 T, -- a,(t) + U(t)

I T
62(t) T-a 2 (t)+ - - (t)

(3.31)

T
d]4(t - 2~a14 (t) + ý_1?L -

(3.32)
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Putting this set of differential equations into state-space form, yields:

where diag [-] is a diagonal matrix of the argument and the rows of matrix B,, are the IT

row vectors, divided by 7•R•2 .

To determine the elements of the matrix Bin, consider the entire mirror at steady

state such that :',m(t) 9. Substituting this into Equation (3.33) and manipulation yields:

, (t) = diag [r] B.,u•(t) (3.34)

Comparing this equation with Equation (3.12), it is straightforward to show that:

Bi,=diar' [2I M (3.35)

where M is the steady-state influence matrix and r is 0.00045 seconds.

In summary, the dynamics of the Itek deformable mirror are written in terms of

the mirror's contribution to the Zernike coefficients of the reflected image. Invoking the

assumptions of identical actuator influence functions and identical, first-order actuator

dynamics, the equation for these contributions to the Zernike coefficients is:

5cm(t) = diag &,1(t) + diag []Muj(t) (3.36)

It should be noted this equation is a truncation of the infinite-dimensional functional-space

description to 14 dimensions.

3.4 Augmented System Dynamics

The overall continuous-time description of the adaptive optics system dynamhics is:

= F, u0) -x--1 (3.37)o t F,, X (t) B"_
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The upper partition of Equation (3.37) represents atmospheric dynamics; the lower parti-

tion represents mirror dynamnics.

3.5 Wavefront Sensor

The inmage reflected from the deforinable mirror contains phase distortion due to

atmospheric turbulence an(] also counterdistortion due to the mirror deformation. I)ismor-

tion here is deviation in phase from the aperture-average phase, thus piston is excluded.

Letting the phase distortion in th.. reflected image be modeled in the Zernike functional

space, the corresponding discrete-time Zernike coefficients for the reflected image are:

a(ti) A I II - j (3.38)

where A is the extraction matrix defined in Equation (3.2) and I is a 14-by-14 identity

matrix. Note that this equation models the reflection process as a summation of two sets

of Zernike coefficients. Since the wavefront sensor measures the distortion in the rcqfccied

image, the discrete measurement equation for the wavefruitt sensor can be written as:

z(t = i H'a(t,) + ,(.i)

W I A I I + +v(ti)

= Itx(tj) + j(tj) (3.39)

This research takes the approach of first calculating the 1H' matrix analytically, then post-

multiplying by the [ A 1 I 1 matrix to obtain 11. The measurement noise covariance R.

corresponding to v(ti) is left as a design parameter.

3.5.1 Wavefront Sensor Description The reflecLed image is diverted to she wave-

front sensor via a beamsplitter. Light reflected from the beamnsplitter enters the llarttIann

wavefront sensor. The llartmann sensor consists of an array of square convc:x lenses, each
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Figure 3.8. Subaperture Locations on Hartman Wai efront Sensor

considered a subh- ture of the sensor. The senc: has C-9 fully-illuminated square sub-

apertures. Figure 3.8 shows the arrangements of the subapertures in the Hartman sensor

aperture. Each subaperture is 0.0G cm on a side [271 and focuses its share of the incident

light onto a reticon detfctor. The location of the focused spot of light on the detector

is an indication of the average x- and y-tilt in the subaperture. Since subaperture tills

are measured, the Hartmann sensor is essentially a slope sensor. Figure 3.9 shows a two-

dimensional analog of the operation of the Hartmann sensor [27).

3.5.2 Derivation of H' An important concept is that phase distortion it the image

manifests iself azs a set of subaperture till measureinentss in the Hartmann sensor. Thus

any Zernike mode (except piston) distortion of the whole image is measured as a set of

tilt measurements. It is assumed the Hlartmann senscr can output these 138 tilt measure-

ments (69 x-tilts and 69 '-tilts) directly. The sensor normally processes t!..e set of 138 tilt

measurements and r(.constlucts the phase. but this reconstruction is based only on cufrent

tilts; previous time reai;zations are not considered. This reconstruction process is accom-
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Figure 3.9. Concept of Operation for Two-Dimensional Hartmann Sensor

plished in software, requiring computational time. This research therefore assumes the 138

noise-corrupted tilt measurements are the outputs of the sensor, i.e., comprise the z(ti)

vector. The Ealman filter estimates the system states from the 138 tilt measurements.

Consider the phase distortion of the image entering the sensor to be a function of

position in the aperture and discretized time:

O(X, Y, tj) (3.40)

The variables X and Y are rectangular coordinates with respect to the center of the total

sensor aperture. Just prior to light entering one of the square subaperture lenslets, the

x-tilt at position (X1,Y 1 ) is:
a,)(X , 1" ij)! (3.41)

)Y %Ix),rX

Letting (X,,, Y,) define the coordinates of the center of the s-th subaperture with respect

to the entire sensor aperture, the aveiage x-tilt going into the s-th subapertuie lenslet is
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then: then: dY d+ (3.42)

A _i._ JA , 2_)EA

where A is the area of the square subaperture.

According to Petersen and Cho [32) thn output of a Ilartinan n-type slope sensor is

a similar intcgral, but with the slopes spatially wighted. For example, the output of the

x-tilt channel in a subaperture (ignoring noisc) is:

°2 1 i":~~+ I - 'A •

L-•. _J' _ d Y .. X dX TV (X -- X,,Y - 1/) a9ý(X, I,-j) (3.43)
2 2

The constant L is dependent on wavelength, lenslct focal length, and output scaling. Pe-

terson and Cho derive the spatial weighting function 1'V (X', V') for a square subaperture;

the normalized version i,;

14.,(X'' 21() [2 ln(2) - (1 _ l1' n (I _ -" ( + 2")In (I+ 3

(3.44)

Similar equations can be written for the subaperture y-tilt channel. A plot of Equa-

tion (3.44) for the subaperture dimensions of this research is shown in Figure 3.10. Obvi-

ously the slope of light traversing the center of the subaperture is weighted more heavily

than that traversing near the edges.

If the phase distortion of an image can be represented as a linear combination of

basis functions, then the partial derivative expressed in Equation (3.41) can also:

0¢(X, Y, t,) a Z, (X, Y) aZ4(X-, Y)(01" ai(tj) alyl + + al 4(t.) 0) (3.45

Substitution of Equation (3.45) into Equation (3.43) and simple manipulation yields:

L14 1 r+ V_ 0Zi kX, Y)"Z" (fk) d)- dX I V,(X - X.Y )'-

(3.46)
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Figure 3.10. Slope Measurement Weighting Function

Equation (3.46), representing the noise-free output of the x-tilt channel for the s-th sub-

aperture, can be written in vector notation:

z,(t) a(tj) (3L47)

The i-th element of the n. Nector can be thought of as the projection of the i-th Zernike

function into x-tilt measurement space at the s-th subaperture. Knowing the location of

the center of an actuator relative to the entire aperture, and knowing the partial derivatives

of the Zernike functions, the elements of n . can be determined as:

n / d Y dX Wz(X - X,,Y - Y,) ( (3.48)2 JY -

Equation (3.47) cani be repeated for both the x- and y-tilt channels for all 69 illu-

minated subapertures, continuing with the noise-free measurement assumption. The 138
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resulting equations can be augmented into a matrix form:

zý(t) = L Na(tj) (3.49)

Therefore, the H' matrix of Equation (3.39) is:

H'I N (3.50)
A

The Fortran program developed to calculate the N matrix for this research is archived

at ALIT (39]. Appendix F shows the resulting N matrix.

To determine the value of the scaling constant, LIA, results of previous AFIT research

are useful. Miller [27] collected measurement data from a realization of the Hartmann

sensor studied in this research. lie excited the sensor with 543.5-nm laser light and recorded

the outputs from the slope channels. These outputs were nuti in wavelengths of tilt, but

rather in internal programmable microcoded processor (PMP) units. He determined that

one wavelength of tilt across a subaperture, on the average, resulted in a slope channel

output of 745 PMP units. Simple algebra shows that one wavelength of y-tilt across a

subaperture corresponds to the Zernike coefficient a, = 2.574. The value of LIA applicable

to his research can be determined by considering the non-zero elements of the a, column

of the N matrix, which are 2.0419. Solving the equation:

7 = ) (2.0419) (2.574) (3.51)

yields a value for k of 141.75.

A

To keep the analysis as general as possible, this research assumes the outputs of the

llartmann sensor are the x- and y-tilts of each subaperture, in units of 514-nm wavelengths

(not PMP units). Similar algebra yields a value for L of 0.19026. The AN matrix derived
A

in Appendix F should be premultiplied by this constant to get the H' matrix used in

Equations (3.39).
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3.,5.L Derivation of R The outputs of wavefront sensors are generally corrupted by

noise. Numerous literature references [30:139] [14:30] [40:1772] [40:1773] 132:821] indicate

the noise is zero-mean, white, Gaussian, uncorrelated from subaperture to subaperture,

and uncorrelated -o the wavefront phase. Possible sources of this noise include photon

shot noise, A/D quantization noise (assuming the Htartmann outputs are digital), and

thermal noise. The photon shot noise variance is inversely proportional to the number of

photons counted during a measurement cycle [47]. The photon count is, in turn, relhAed to

light intensity. The lower the light intensity, the more shot noise there will be in the slope

measurement. A/D quantization noise is typically uniformly distributed between minus

1/'2 and plus 1/2 least significant bit. This distribution could be approximated as Gaussian

with the 3-cr value set to 1/2 the least significant bit [24:364]. Thermal noise is related t,,

absolute temperature, through Boltzman's constant.

Since the intensity of the viewed object is expected to vary greatly [23] as the target

changes orientation with respect to the viewer, and also from target to target, it is likely

that the shot noise contribution to the measurement noise will also vary. This research

treats such noise as the dominant noise source, ignoring all others [47]. Therefore, this

-csearch includes a parameter study on the R matrix. Using equations discussed in Welsh

and Gardner [47], this research calculates slope noise strengths corresponding to 1000, 100,

and 10 photons per subaperture. Table 3.2 shows values used for the diagonal elements of

the R- matrix.

Table 3.2. Measurement Noise Strengths

N DESIGNATOR Ri, (wavelength 2)

1000 Low 0.01755 •.

100 Medium 0.0555

10 H -igh 0.1755
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3.6 Summary

This research develops stochasti.- models for atmospheric turbulence , Tects, de-

formable mirror dynamics, and a Ilartmann-type wavefront sensor. The phase distortion

due to atmospheric turbulence is modeled in the Zernike functional space. The Zernike

coefficients are modeled as first-order Gauss-Markov random processes. The models are

obtained by fitting theoretically-derived autocorrelation data to appropriate functions.

Using data from the AFWL, this research synthesizes a deterministic dynamics model for

a deformable mirror. The ability of the mirror to reconstruct the 14th Zernike function

is verified in a simple simulation. The measurement matrix H is calculated by projecting

each Zernike mode of distortion into subaperture slope space, incorporating an appropri-

ate weighting function. Finally, values of slope sensor noise due to photon shot noise are

calculated, to be used as a varying parameter in simulations.
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IJ[ Ctý etrol!(t- Desii,7n

4.1 KaNeman Filter })ksiv.,n

The Kalman filter for this research is of the same order as the truth model. Since both

the atmosphere and the mirror Zernike coefficients are first-order processes, the KIalman

filte-r is a 2S-state filter-14 for the atmosphere and 14 for the mirror. For the time-invariant

model assumed here, the coytinuous-time dynamics and discrete-time measurement truth

model equations are:

5__(t) = Fx(t) + Bu( ± w(t) (,.)

z(1 ) = Hx(ti) + (4.2)

ThI F and Liratices are di,,oc], with deiOent.s gien I:-, Table 4.]. The y tilt

and x-tih no~se strý:ngths have bee._ attenuated to reflect the presence of tilt mirrors.

These tilt mirroru are modeled as removing 95 percent of atmosphere-induced tilt. The

B -,natr:,: is merely dcternined using Equations (3.353) and (3.37); the M matrix is given

in) Appendix E. The H matrix is determined from Equations (3.39), (3.50), and the N

miiatrix of Appendix F. The noise variance matrix, R is an identity ma-trix premultiplied

by one of the values of 1'able 3.2, depending on the noise model.

The filter models the continuous-time dynamics of the truth model in the discrete

domain as suggested by Equation (2.38), forgoing on-line integration. Table 4.2 summarizes

the dimensionality of the discrete state-space filter model for the adaptive optics system.

With a sample period of 7 milliseconds (the maximum sampling rate of the Reticon

chip in the Hartmann senser [27)), the state transition matrix for this time-invariant system

model is calculated as [24:42]:

4(t,+i - ) = e(F)(0.007) (4.3)
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Table 4.1. Continuous State-Space Model

Fi (second') Q,, (wavelength 2 /second 2 )

1 .7 0.1605
20.07

2 - .1 50.075

3 1 0.4050.08.5

4 3 0.8000,0113

5 3 0.509

6 - 0.1240.036

7 1 0.223
0.02

8 - lA- 0.210" ~0.023

9 1 0.2410.02

0.12 O_

11 1 0.06940.018

121 0.083312 oi _ _ __ _ __ _ __ _ __ _

13 0 0.0645
0.067

14 1 0.117
0.015

115 1 oo- 0
0.000450

16 0.00045 0

17 1 0
0.00045 -- - -

i8 _ 0I
0.00045

19 1 0
0.00045

20 1 00.00045

21 1 0
0.00045 0

22 1 - 0
O .00045

23 1 00.00045

24 1 00.00045

25 1 0
0.00045

26 __1 0
0.00045

27 - 1 0
0.00045

2S (} 1OI -
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Table 4.2. Dimensionality of Kalman Filter Vectors and Matrices

Matrix/Vector Dimension

"D~ti+ I, t,) 28 x 28

2_(Q 28 x 1

Bd 28 x 97

__(t:) 97 x 1

wL(i) 28 x 1

Qd 28 x 28

z(ti) 138 x 1

H 138 x 28

v(t,) 138 x I

R 138 x 138L ,&

Since F is a diagonal matrix, so is 4(tj+j - ti), an.d the exponentiation is easily

accomplished term-by-term. The discrete version of the dynamics driving noise is deter-

mined using Equation (2.39). For this time-invariant model, with G being the identity

matrix, and F being diagonal, Equation (2.39) is manipulated:

Qd (ti+ - r)GQGTC2T(tj+i - r) dTr

= O.'U7 eP(O°°7-T)QeF(°'°°70-') dr

Q f.u7 e2F(O0007-T) dT-

[000
Q(2Fo.oo [0.007 e-2F.r dr

.m007
100

= e2P0 J0 1 2F007 ,-2pr F-1]00

1 e r

2 C-2FOj (4.4)
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The diagonal elements of 4I(t,+' -ti) and Qd are given in Table 4.3. Non-diagon:,: e.lements

are zero.

The Kalman filter processes the 138 slope measurements every 0.007 seconds using

Equations (2.43) through (2.47). The filter assumes the measurements are available in-

stantly. The important output of the filter is the estimate of the system state, since this

is ultimately multiplied by the controller gaii.

The Kalman filter requires initial conditions on both the state estinate i(0) and

covariance P(0). Since the states model the Zernike coefficients as zero-mean, the initial

filter estimate of the system state is selected to be a zero vector. The fir.t 14 diagonal

elements of P(0) are set to large values to reflect initial uncertainty.

4.2 Linear Quadratic Regulator Design

Equation (2.41) defines the cost to be minimized by the quadratic regulator. For the

adaptive optics system of interest, it makes sense to assign cost to the phase distortion in

the reflected image, since this is the image which is desired to be distortionless. It also

makes sense to assign cost to the control voltages, since they are restricted to be within a

finite range (±10 volts). The derivation of both the X and the U cost matrices are now

discussed.

The phase distortion in the reflected image is modeled by its set of Zernike coefTicients.

This set of Zernike coefficients is obtainable from the discrete state vector by:

xr(t,)
[A I 1 (4.5)

The quadratic cost associated with the distoition in the reflected image is:

T

A I I C A II (4.6)
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Table 4.3. Filter State Tiansition Matrix and Discretc Driving Noise

I ,jj( ti+ It.) Qajj (xwavelength 2 )

I 0.904810273562201 0.004073001858519

2 0.954383210022565 0.002004933000163

3 0.920977197358095 0.010455681053018

It 0.737595286709826 0.016778406543654

5 0.818738942175464 0.011746606438655

6 0.823279104805153 0.002876474222156

7 0,704688089718714 0.004490459090181

8 0.737595286709826 0.004404331717709

9 0.704688089718714 0.004852917671451

10 0.943357461794596 0.009593719G16645

11 0.677788484408774 0.001350533885479

12 0.627118334037179 0.001516351317027

13 0.900765787779704 0.001629746010087

14 0.627074461402559 0.002129683020039

15 0.000000175785735 0.000000000000000

16 0.000000175785735 0.000000000000000

17 0.000000175785735 0.000000000000000

1s 0.000000175785735 0.000000000D00000

19 0.000000175785735 0.000000000000000

20 0.000000175785735 0.000000000000000

21 0.000000175785735 0.000000000000000

22 0.000000175785735 0.000000000000000

23 0.000000175785735 0.000000000000000
24 0.000000175785735 0.000000000000000

25 0.000000175785735 0.000000000000000

26 0.000000175785735 0.000000000000000

27 0.000000175785735 0.000000000000000

28 0.000000175785735 0.000000000000000
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where the C is a diagonal matrix of cost elements. Assume one desires I ite maximumn rms

phase deviation due to any Zernike mode to be 1/20 of a wavelength. RIemembering that

the Zernike coefficients map directly into rms phase distortion, one can sa3 the maximum

value for any Zernike coefficient is 1/20. Each diagonal term of C, for the first design, can

be set equal to the reciprocal of the square of the maximum value [25:69]. Therefore, the

diagonal elements of C are 400, with all other elements zero, for initial tuning.

Manipulating the expression in Equation (4.6) one obtains:

[Jrt xc)3[ CA AC][ z (4.7)

which is exactly of the form

xTX x (4.8)

The extraction matrix A is a 14-by-14 identity matrix for this research, since each atmo-

spheric Zernike coefficient is modeled as first-order Gauss-Markov. Therefore, the state

cost matrix X is a 28-by-28, singular, banded diagonal matrix:

X -= (4.9)
C C

The first design iteration of the cost matrix U associated with the control voltages

is simpler to derive. The maximum allowed control voltage to any actuator is ± 10 voits.

Using the reciprocal-squared method results in the initial design for the U matrix being

a diagonal matrix with diagonal elements of 0.01. If the simulated peiformance of the

adaptive optics system is unacceptable, these cost matrices can be varied to try to improve

performance.

Knowing the P(ti+l -ti), Bd, X, and UJ matrices, one can use the Martix-X command

"DREGULATOR" to obtain the steady-state solution of the backward Riccati equation

and obtain the optimal steady-state controller gain matrix GQ (See Equations (2.51) and

(2.52)). This value of G; cani now be used as the controller gain in a digital simulation

of the adaptive optics system. The cost matrices X and U can be adjust( -I to try to

4-G



improve performance. The controller multiplies its optimal gain by the state esti.mate

from the Kalman filter to obtain a set of control voltages for the tnirrA actuators (See

Equation (2.50)).

4.3 Summary

This chapter assembles the results of previous chapters into suitable Kalnan filter

and controller form. The cost matrices X and U are calculated for the first iteration of

controller design. Matrix-X software is used to solve for the steady-state controller gain.

Depending on simulation results, the cost matrices may need to be tuned to maximize

performance, i.e., minimize rms phase distortion in the reflected image.
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5.1 AMethodoloqy

A digital sim'ulation of the adaptive optics system was desired iii order to test the(

effc~tiveness Of the LQG con)Itroller iii reducing phase alberration. The Miultimodo Slinula-

tion for Optinal I :ter Evaluation (INSOFE') software tool was used [28]. The simulation

inivolved implementing. a truth model of the atmosphere/mirror/sensor systemn to generate

simulated discrete-time Hlartmnann sensor measurements. The Kalman filter, also em-

bedded in the simnul;.1ion, processed these simulated measurements and determiniied the

estimate of the 28 truth model states. The LQ regulator theni multiplied this state vector

estimate by the optlimal controller gain (p-.v-ca~lculated off-line), and the resulting conitr-i

volt~agc commands were sent to the simulated mnirror actuators. The nionhiuieauity of the

miurror re Lis U ipj~jJjIUI W~it'fOI Vutg Iwas .5il-uated lK-. 1-11~n the1 mirror voltage to

the ± 10 volt region. IFor example, if the contruller tried to command aii 11-volt control

voltagre to an actuator, logic in the simulation programn truncated the value to 10 volts.

This nonlinearity imposed the use of multiple Monte Carlo simulations, as opposed to a

single covariance analysis '124:3291, '128.

Outpu -,from the simnulatiým Included time histories of the 28 truthi-model states.

the filter's estimates oi these, states, thec 11irer covariance matrices, and the maxiumui and

mqinimum control voltages of the mirror actuators. Post-simulationr data reduictic~n yielded

time histories of the rinns phase distortion ait Ithe optics entraince aperture as; well as the rms

phase distortion after correctioii. The Matrix- X softivai e p.ackageý_ was used to perform the

data reduction as wvell as generate plots of time histcories. lIn additioni to single realizatioiis

of these time histories, ensemble statistics were generated using Monte Carlo analysis of

ten runs.

As p)reviousiv discussed, there is expected to be significant variation of meuasurement

noise strength. i.e., the elements of the Rt inatrix. in a real adaptivu optics systemn. The

simulation wvas p~erformled in ninue "studies" in order to investigate performance scinsitixitv

to R. E'ach study simnula ted ait (fif: ent combiniation1 of t.ruth modlel and filter !iiodel

measurement. noise streingths. Table 5.1 ShJowýs thle ohIut Iuu simulated



Table 5.1. Truth and Filter Model Measurement Noise Strei.gt.hs

STU DY TRUTH FILTER

I Low Low

2 Medih.m Medium

3 High High

4 Low Med

5 Low High

6 Medium Low

7 Medium ttigh

8 lHigh Low

9 High Medium

The noise strengths of "Low", "Medium", and "High" correspond to photon ccents

per subaperture of 1000, 100, and 10, respectively; see Table 3.2. The objective here was

to determine the effect of mismodeling the noise strength in the Kalman filter. In a real

implementation, R in the filter model may be fixed and therefore wrong for the case of

the true, intensity-dependent measurement noise. Since the regulator design was based on

a deterministic version of the stochastic dynamic equations due to certainty equivalence,

changing the R matrix does not affect the steady-state value of the regulator gain matrix

G*. Thus, all nine studies used the same regulator gain matrix. The following discussion

presents a verbal and graphical description of study 1.

5.2 Study I Description

Stady 1, having low measurement noise co! ?ctly modeled in the Kalman filter, is

the most optimistic of the studies from a performance perspective. Since the mirror (states

15-28) is assumed deterministic iri both the truth and filter models, the filter estimates of

the mirror state., are trivial, and they will be omitted from mnost of the discussion. In an

operational system these deterministic states should not even be included iP the INalhnaii

filter, for computational reasons. Their inclusion in the filter here is merely convenient_
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5.2.1 Simulated Atmospheric State Bchavior Th' research models image phase dis-

tortion induced by atmospheric turbulence as fourteen time-varying Zernike cofl~cients.

It is arbitrarily assumed that tilt mirrors ahead of th, adaptive optics system remove 95

percent of the first two Zernike modes (y-t .t and x-tilt). Zernih:o coefficients for the re-

maining tilt distortion as well as the other twelve modes are states 1-14 of the truth model.

Figure 5.1 shows a time-history of a sample realization of the y-tiit Zernike coefficient x,

as well as the filter estimate, ,.

.15.1t A I A

-- . 05 -*- -- _ ___ --- __- -(f- .. .

S-0 -- - _ __i

05 1 15 2 25 3 35 4 45 5

lIME (SIC)

- System - - Filter

Figure 5.1. Atmospheric Y-tilt State and Filter Estimate

Filter error car, be defined as the true state minus the filler estimate of the state.

The filter covariance P is the filter's indication of uncertainty in its estimates, as iin -qua-

tion (2.42.). The square root of the (1,1) element of the P matrix i, what -.he filthr believes

to be the I-a value of its error. A!though Figure 5.1 shows that the filter appears to be

tracking the true state value, it does not indicate how the actual filter error compares with
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what it thinks are its 1-c values. Figure 5.2 shows a time history of the filter error for

state 1, as well as these filter-compuved 1-a values.

S.05-I_ _ i
LAJ

Of 0

0 .05 1 .5 .2 .25 .3 .35 .4 .45 .5
TIME (SEC)

-Ei'ror - ± V1TFh4-

Figure 5.2. Atmospheric Y-tilt Fiiter Error and Filter Variancz

Looking at the single-sample rea2izatioa of fiher- error of Figure 5.2 and a:.,.uminig the~

error is an ergodic random proces:s, it appears that ± 'P(1,1 T is a reasoxiab;ý 1-cýf value

for the error, and that the error is zes o Figre 5. In order to obtain the "trc" error foar

and variance, a M4onte Carlo analysis of ten runs was accoraiplisiie& The equjations use,"

to process the results of these ten runs are:

.LLE~~t) 1 ((t

.I

10 k=

-. k=1



where

ek(t) Xk(t) - id(t) (wavelengths)
k = sample reaiization number
PEW = mean of random process E(I) (wavelengths)
o' (t) = variance of random process E(t) (wavelengths2)

Figure 5.3 shows a plot of the raean and standard deviation of the filter error for

state 1, as calculated from the ten sample realizations using Equations (5.1) and (5.2).

Visual inspection of this plot reveals the error process is approximately zero mean, with

standard deviations approximately equal to the f{ ý1, 1. values from Figure. 5.2. if more

sampl;" realizations had been included in the Monte Carlo analysis, the simiiarity would

most likely be even greater.

Plots similar to those of Figures 5.1, 5.2, and 5.3, can be found in Appendix G jor

the remaining 13 states corresponding to image phase distortion prior to correction. This

complete set of plots is for study 1 only.

6.2.4' Pcrformance An. lysis The performance of the LQG -ontroller can be e'x-

pressed in ter'ms of rrri phase distortion in the corrected image v-ersu&. the ::ms phase

di:tortion of the incident image. Again, incident here mrean.rs after the tilt mirrors have

removed most of the. gross tilt. States 1-14 of the system model are the Zarnike coE;h-

cients for atmosplhere-induced phase distorttcn, and states 15-S are Z.ernike coefficiets

for the mirrorcinduced "couiterdisw.ortion". Since reflertion from the defoumable mirror is

modeled as addition of atmospheric and m'rxox phase distortiorns, the Zernike c.efficients

of the reflected (i.e., corrected) iirage are:

at! <,() +a (t) (5.3)

= ) x1 1 4 J) 4(5.4)

= j~I) 1) (5.5)
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Figure 5.3. Mean and Standard Deviation of Atmospheric Y-tilt Filter Error

It has already been shown that the rms phase distortion is the square root of the

sum of the squares of the Zernike coefficients (see Appen~ix C). The rms phase error of

the incident image is:
1ý4

'krm(L) \(x)2 (5.6)

and for the corrected image, the rms phase distortion is:

14

6rn't (i+ -Xi414)2 (z)

A time history of a sample realization of the rms phase distortion is shown in Figuio 5.4

for both the incident and corrected images. The values for thi~s plot were obtained diuring

the p.ost-slinulation data reduction phase of the study, usinig Equaitions (5.-,) and (5.7).



The plot clearly shiows tiie s.eduiction in rms phiase error. Moreover, thiis sinlef( reali7;:i 10n

shows thle rmis plhase error of thie c:orrectedl image tends to sti:%v in fltn vicinity of abi *~ U

wavelei, ;is, whereas the( rrns phiase error o' 0-- inciden~t iimape varies betwveeit about 0.1

wavelength and 0.5 wavelengthi.

Calculating similar resulLs1 for cachi of the ten Monte Car~o rea~lzaxtions and genci ating

the usual statistics results in values plotted in Firure 5.5. The upperC thiree 'lnes of tite

graph show the meani and the- [nean11-llu values onj the tins pliast. distortoionif the,ý incl!,idunt

imiage. The apparent trainsient- ii! these three lines durin6 the initial 0-0O5 seconds of the

simulation was caused by unrealistic initial condition' in the trulth mowi~ (all :,tatus zero).

It would be. a morý realistic simulation if thte initial true- states were randoni. The lower

th~ree lines of the rh rcprc2seln the rucar. and thec J'nea-i. ± !-cu' val ios oii th.1w inis phase

d!Istortioni of the corrected imnage. One featur& ol note is that the 1 -a values on 0~e corrected

imiage are tighter than, onL t!e incidunit image. TIiis seemis to socfŽ die.

corrected image is. somewhat constant. despite wide. variation in thie amrount of atmospheric

distortion. Another feature is the saxvtooth appear-ance of tne lower set of pldot~s. The period

of the saw.tooth appears to be the Hlartmanan samplinig pio 007sc.Tissges

the correction is most effective jos t after a measurem.,nt, and degrades as thie atmosphere

chianges between measiurieints. One may. wo-ncier if evT). better performan-ce n;- posible.

In othc3; wordis, one can ask, .-what, is limiting, the p.-ýrforrnance shown in Figure 5.5? At

least three answers, are possible: !) saturation of rni.ror actiuators. 2 irmproper, Y chiose!.

weighting miatrices in the LQ reg-ulator, or 3) the :hrsestimation errors. The first

possible reason. actuýat~or saturation, is immediately cvi'nnated hasedl on fiue5.6. '1

plot shows the absolute envelope for flhe actuator control voltages for the ensemble of

ten Monitc Carlo realizatU-,ins-. Given tiiat saturatioyn riccurs whien th-a inagniat ode C)" theU

comimandjed voltage exceeds, 10 volts, and6 thý maýxliimun actual excursion was only about

±one volt, sat,.ra,1.i:an did not occui. Iin fact, one( could siay thie mirror ha~d uiitý: L bitt

of L"rzmalmin~g" capability he-ft. The se-cond reason, iimproperlyý 1OciiosWC) weigting ,ir'irce

X ai~d U., was -!hm'in.a!td b.ý a tuning ex perinie-t. Tilec nonizero elealents, of thle X
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Figure 5.4. R M.S Phase Distortion Before and After Correction
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Figure 5.5. M'vonte Carlo Study of RkIS Phase Distortion Before arid After Correction
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Figure 5.6. Control Voltage Envelope for Monte Carlo Study

matrix of the cost equation wvere increased by 50 percent. This penalized the distortion of

the corrected image more heavily. The simulation was re-run using the new steady-state

controller gain, Gc, and performance did not improve. The third reason, filter estimation

error, was analyzed in the following manner. The filter's function is essentially to estimate

the ZerniI-e coefficients of the incident, uncorrected image. Assume the regulator/mirror

combination can perfectly implement the filter's estimate (without a sign change). The

rms phase error due sokly to the filter's estimation crror can be thought of as the lower

bound on rms phase error attainable and is calculated using:

'Monte Carlo analysis of values calculated using Equation (5.8) is shown in Figure 5.7. The

extreme similarity of this grAph and the'lower three plots of Figure 5.5 strongly suggest

that filter estimation error is the perforinance-lirn'ting factor. AIL alternate method of
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determining the contribution of filter estimation error to the rms phase distortion would

be to input x instead of . into the controller, anrd see if the rms error is eliminated. This

alternate method was not used in this research.

I.6 I

.2

I I

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5

TIME (SEC)
- Mean - - - Mean ± 1-c

Figure 5.7. Monte Carlo Study" of R.MS Phase Distortion Caxused by Filter Error

S~5.3 Performance Results

Tlhe above aitalysis section dealt exclusively with study 1, the case of low mneasure-

ment noise correctly modeled in the filter. Similar graphs for the remaining eight Studies

are shown in Appendix Ii. 'Also shown are- filter estimation plots for Zernike modes 1

and 14.) In order to coinpare results from t.he nine studies convenienti,y, further data

compres. -, was accomplished. This amolinted to tinie-averaginig the mean-value plots of

rins phase distortion from each of the nine Monte Carlo. studies. Thus each of the nine

studies is summarized by three numbers: the rms phase distortion of tihe incident linage,

5-10

II I II I I I II I II I II



the rms phase distortion of the corrected image, and the rms phase distortion which could

be achieved if the regulator/imirror could perfectly implement the filter's estimate, i.e., the

filter "error." Furthermore, all three of these numbers can be normalized by dividing by

the first. This normalization provides a fairer comparison across the nine studies. Table 5.2

shows the results of this time-averaging and normalization.

Table 5.2. Summary of Adaptive Optics System Simulated Performance

RMS DISTORTION NORMALIZED

STUDY Inc. fCor. Flt. Inc. Cor. FI't.

1 0.2552 0.1083 0.1031 i 0.4244 0.4040

2 0.2557 0.1126 0.1079 1 0.4404 0.,1220

3 0.2598 0.1321 0.1285 1 0.5085 0.4946

4 0.254,6 0.i088 0.1033 i1 0.4273 0.4057

5 0.2536 0.1187 0.1112 1 0.46S1 0.4385

6 0.2543 0.1124 0.1081 1 0.4420 0.4251

7 0.2565 0.1201 0.1131 1 0.4682 0.4409

8 0.2511 0.1428 0.1446 1 0.5687 0.5759

9 0.2478 0.1356 0.1362 1 0.5472 0.5496

Inc. = Incident linage Cor. = Corrected Image Flt. = Filter Error

As expected, study 1 resulted in the lowest rms phase distortion in the corrected

image. This was the case of low measurement noise, correctly modeled in the filter. That

the rms phase distortion of the corrected image was only slightly larger than the rms phase

error caused by the filter error indicates that most of the phase error in the corrected image

was due to filter estimation errors. As the true measurement noise increased (studies 1 -

2 - 3), and the filter R was modified correspondingly, the performance was progressively

poorer. This reflects the fact that noisier measurements resulted in a less accurate state

estimation, even with the filter properly tuned.

The worst performance came from st,,dy 8. This was the case of high measurem2nt
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noise, mismodeled in the filter as low measurement noise. Heuristically, the filter had too

much confidence in the incoming measurements, and tended to disregard it's own model of

the dynamics. The result was a corrected image having an rms phase distortion of 0.1428

wavelengths.

5.4 Summary

This chapter discusses the digital simulation of the adaptive optics system. The

MSOFE software 128] is used to accomplish the simulation. This software simulates both

real-world behavior and Kalman filter processing. Modifications to the software allow

for implementation of LQG control. The simulations comprise a set of nine studies, each

having a different combination of true measurement noise and filter model thereof. Study

1, the case of low measurement noise correctly modeled in the filter, is analyzed in detail.

.A table. of results is presented which indicates filter estimation errors limit the controller's

performa.,ce.
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VI. Con chisions 7,ind J?ccowii? tedalion0s

6.1 ,Sumrnflor?

This research considered the design of a nominal linear quadratic Gaussian (,QG)

controller for a ground-based adaptive-optics telescope. Phase distortioil caused by at-

mospheric turbulence was modeled as 14 time-varying Zernike coefficients. The effect (,f

tilt mirror, was modeled as removing 95 percent of the mean square contributioi of the

first two Zernike modes. Dynamics of the 97-actuator deformable mirror, following the tilt

nuirrors in the optical lith, were modeled as a 14 deterministic first-order lags.

A 69-subaperture Ilartrnann-type wavefront sensor was assumed to be the measure-

inent device. The slope outputs from the subapertures comprised a 138-element measure-

nment vector. The sampling period was assumed to be 7 milliseconds, corresponding to

the maximum detector rate. A 28-state Kalhnan filter processed the measuenic, Is from

the wavefront sensor and obtained estimates of system states. A constant-gain linear

quadratic (LQ) regulator processed these state estimates and determined an appropriate

set of commands for the deformable mirror.

The entire control system was digitally simulated using the Multimode Simulation

for Optimal Filter Evaluation (MSOFE) software. Nine simulation studies were conducted

to investigate the effects of mismodeling the noise in the measurement device.

6.2 Conclusions

1. The LQG approach used in this research makes sense because the desired goal of

reducing the rms phase error translates directly into the quadratic cost criteria. The

mean-square phase distortion Us the sum of the squares of the Zernike coefficients

(states).

2. Most of the open literature models atmospheric turbulence as having Kolmogorov

prope-rties. Taylor's frozen field assumption is also popular. Results bascd on actual

measuirements of atmospheric effects on image quality are sparse.
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3. Assuming the atmospheric distortion is well-modeled by the Gauss-Markov processes

of this research, the deformable mirror operates in the linear region, i.e., its actuators

are seeing control voltages in the ±1 volt range, whereas saturation occurs at the

±10 volt limits.

4. Modifications to the MSOFE software allowed for simulation of LQG control. These

consisted of pre-muhiiplication of the filter state estimate vector (after measurement

update) by the steady-state controller gain, pre-multiplication of this result by the in-

put distribution matrix, and adding the result to the right-hand side of the dynamics

equation.

5. Based on Monte Carlo simulation results, the adaptive optics system did reduce

phase distortion in all cases. Table 5.2 shows that. the (sinmulated) deformable mirror

reduces the rms phase distortion to about 40-60 percent of its incident (post-tilt.

mirror' value. The best performance was achieved when the filter model of the

measurement noise was "correct" relative to the truth model. When the measurement

noise in the truth model increased, the performance degraded, even if the filter was

retuned correspondingly.

6. A single realization of the performance history (Figure 5.4) hints that the phase qual-

ity of the corrected image is somewhat constant, regardless of the actual magnitude

of the incoming atmospheric phase distortion. This result is most likely related to

the operation of the actuators far from their saturation limits.

7. Comparison of the remaining phase distortion after correction to the phase distortion

caused by filter estimation error (Figures -.5 and 5.7) indicates that state estimation

error is the factor most limiting performance.

6.., J ?ccnin11cnd1tiois

6.-.1 Afodciin This research is based on a set of nominal modelb, mostly derived

from theoretical results. The aforementioned "performance" of th:ý LQG controi !aw is

only as valid as the trm;;h model of the real world. This research never claimed to d(eveiop
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